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Abstract: New electron donors with hydroxyl groups were synthesized and characterized 
spectroscopically.  Their redox potentials were determined with cyclic voltammetry, and the 
comparison with BEDT-TTF [Bis(ethylenedithio)tetrathiafulvalene] in this aspect was made.  
These results indicated that the new electron donors had similar electron-donating capabilities as 
BEDT-TTF. 
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Since the finding of organic conductor in 1973 and organic superconductor in 1980, great 
progress has been achieved1 in the field of organic conductors and superconductors. 
Much effort is still being devoted to this field, and several significant results have been 
obtained by subtle modifications of BEDT-TTF, such as, the substitution of peripheral 
sulfur atoms with selenium ( BETS )2 and oxygen ( BEDO)3atoms,  the extra-substitution 
with hydroxyl , amide, pyridine groups4 etc.,  all of them are aimed to increase the 
dimensions of the materials by enhancing the intermolecular interaction, Recently, we 
have paid great attention to new electron donors with hydroxyl groups since electron 
donors bearing hydroxyl groups would give rise to two or three dimensional materials 
through hydrogen bonds,  which can form among electron donor molecules and acceptors 
or counter anions.  We have reported the synthesis and related investigation of the  
electron donor with four hydroxyl groups previously5.  In this paper we will describe the 
synthesis and electrochemical studies on four new electron donors with hydroxyl groups.  
The synthesis of new electron donors 1 (a-d) (see scheme 1) started from trithione 
oligomer (C3S5)x 2 which was prepared by the oxidation of bis (tetrabutylammonium)bis-
[2-thioxo-1,3-dithiole-4,5-bis(thiolato)] zincate with iodine6.   Compounds 3 (a-b) were 
synthesized by [4+2] cycloaddition between ally alcohol and 2-butene-1,4-diol, 
respectively, with trithione oligomer, which decomposed to give the unstable 4,5-dihydro  
-1,3-dithiole-2,4,5-trithione  monomer under heating. Similar strategy was employed for 
the preparation of alkyl substituted 4,5-ethylenedithio-1,3-dithiole-2-thione7. Efforts 
were also  made to synthesize 3 (a-b) by the nucleophilic  substitution reaction between 
DMIT anion and  corresponding dibromoalkyl  alcohols, but there  were no target 
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compounds in the  reaction mixture as indicated by analytical  results of thin layer  
chromatography and the mass spectrum. 
 

Scheme 1 
 

Reagents and Conditions:  (i) 1,4-dioxane, 1000C;  (ii) dry DMF, N2, room temperature;  (iii) 
CH2Cl2;  (iv)  P(i-PrO)3, N2, 1400C;  (v) CH2Cl2,  N2, room temperature. 
 

The trialkylphosphite mediated coupling of 1,3-dithiole-2-thiones is standard 
chemistry in the construction of TTF derivatives. However, direct coupling of 
compounds 3 (a-d) was failed probably because of the side-reaction between hydroxyl 
groups and trialkyl phosphite although triisopropanyl phosphite instead of triethyl 
phosphite was used to hinder such side reaction.  Thus, 3 (a-b) were converted to 4 (a-b) 
to protect the hydroxyl groups with tert-butyldiphenylchlorosilane. Oxidation of 4 (a-b) 
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with mercuric acetate gave 5 (a-b) in high yield.  The cross coupling reaction 
between 5 (a-b) and corresponding 1,3-dithiole-2-thiones afforded compound 6 (a-
d) in moderate yield.  Deprotection of 6 (a-d), using tertbutylammonium fluoride in 
CH2Cl2, afforded target molecules 1 (a-d) in analytically pure form after isolation with 
column chromatography on silica gel.  Since the target molecules 1 (a-d) were easily 
and quickly oxidized in crude reaction mixture under air, the deprotection step should 
be performed under nitrogen atmosphere and tertbutylammonium fluoride should not be 
largely excess. The chemical structure of 1 (a-d) were confirmed by spectroscopic data 
(1H-NMR, MS) and elemental analysis8. 

The redox behaviors of compounds 1 (a-d) were investigated by cyclic 
voltammetry and the data were collected in Table 1.  They all exhibited two quasi-
reversible redox waves.  For comparison, the corresponding redox potentials of BEDT-
TTF were also measured under the same condition and listed in Table 1.  It can be seen 
that compounds 1 (a-d) show similar electron-donating capacities as BEDT-TTF.  It 
further indicated that the substituted hydroxyl groups of 1 (a-d) have no significant 
influence on the electron-donation properties and they all should be good precursors for 
organic conductors. 
 
Table 1  The redox potentials of compounds 1 (a-d) and BEDT-TTF [solvent: CH2Cl2, voltage vs. 
SCE, electrolyte: TBAPF6 (0.1mol.l-1), ] 
 

compound E1
1/2 (V) E1

1/2 (V) 
1a 0.46 0.88 
1b 0.48 0.87 
1c 0.48 0.88 
1d 0.48 0.85 
ET 0.48 0.89 

 
In conclusion, new electron donors 1 (a-d) were synthesized and characterized. 

Their redox potentials were determined and they have similar electron-donating 
capabilities.  The preparation of CT salts based on 1 (a-d) and relevant physical studies 
are in progress. 
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